Invest Tool 업데이트 231003
본문 바로가기
파이썬(Python)/배당투자를 위한 도구

Invest Tool 업데이트 231003

by 만초손겸수익 2023. 10. 3.

퀀트투자로 종목을 선정하는 기능과 KOSPI와 PBR을 비교하는 기능을 추가함

 

기존에 있던 기능 중 보유주식을 배당률을 기준으로 평가하는 부분은 삭제하였음

 

DB 업데이트 함수에서 최근 날짜를 못 가져오는(하루만 못 가져 옴) 현상을 수정함

 

INVEST TOOL_231003.ui
0.03MB

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
import sys
import numpy as np
from PyQt5.QtWidgets import *
from PyQt5 import uic
from PyQt5.QtGui import QIcon
from pykrx import stock
from datetime import datetime, timedelta
import matplotlib.pyplot as plt
import pandas as pd
import FinanceDataReader as fdr
import time
import sqlite3
import random
import os
import getmac
from scipy import stats
 
ui = 'INVEST TOOL_231003.ui'
 
class MainWindow(QMainWindow):
    def __init__(self):
        QMainWindow.__init__(selfNone)
        uic.loadUi(ui, self)
 
        self.db_update()  # 시작하면 DB부터 업데이트
        self.btn.clicked.connect(self.input_data) # 배당율로 종복분석 기능
        self.btn_ex_kospi.clicked.connect(self.kospi_ex)
        self.btn_kospi_ex_ch_rate.clicked.connect(self.kospi_ex_changerate)
        self.btn_div.clicked.connect(self.filtered_by_div)
        self.btn_diff_tr.clicked.connect(self.diff_tr_kospi)
        self.btn_kospi_pbr.clicked.connect(self.kospi_pbr)
        self.btn_kospi_per.clicked.connect(self.kospi_per)
        self.btn_q.clicked.connect(self.quant) #PBRxDPS 종목고르기
        self.initUI()
 
    # 창이 밋밋해서 아이콘도 넣었다.
    def initUI(self):
        self.setWindowIcon(QIcon('to_money.png'))
 
    # 배당율로 종복분석 기능
    def input_data(self):
        con = sqlite3.connect('krx_data.db')
 
        today_df = pd.read_sql("SELECT 일자 FROM fundamental", con)  # DB에서 마지막 행 구하기
        today = today_df['일자'].iloc[-1]  # 마지막 행에서 날짜 구하기
        print(today)
 
        # 이름을 받아서 code 입력
        def code_by_name(name):
            code_df = pd.read_sql("SELECT 일자, code, 종목명 FROM fundamental WHERE 종목명 = '" + name + "' AND 일자 = "
                                  + today, con)
            return code_df['code'].iloc[-1]
 
        name = self.le_name.text()
        code = code_by_name(name)
        self.textEdit.clear()
        self.lbl_code.setText(code)
 
        if not self.le_start.text(): #le_start 가 비었으면
            start_df = pd.read_sql("SELECT code, 일자 FROM fundamental WHERE code = '" + code + "'", con)
            start_date = start_df['일자'].iloc[0]
            if int(today[:4]) - 10 < int(start_date[:4]): #과거 10년 데이터가 없으면
                print('10년전 데이터가 없음')
                if int(start_date[4:6]) > 5#첫번째 데이터 일자가 5월보다 크면 그 다음해부터 시작
                    start = str(int(start_date[:4]) + 1+ '0101'
                else:
                    start = start_date
                print(start)
            else:
                start = str(int(today[:4]) - 10+ '0101'  # 10년전 날짜
                print('10년전 데이터가 있음')
        else:
            start = self.le_start.text() #아니면 원하는 날짜에 시작
 
        #년도별 배당금 표시하기
        dps_li = []
        try:
            i = 1
            print('배당금에서 시작일' + start)
            for y in range(int(start[:4]), int(today[:4]) + 1):
                df_f = pd.read_sql("SELECT code, 일자, DPS FROM fundamental WHERE code = '" + code +
                                   "' AND 일자 LIKE " + "'" + str(y) + '05%' + "'", con)
                prb = i/((int(today[:4]) + 1- int(start[:4])) * 100 #Progress Bar
                self.prb.setValue(prb) #Progress Bar
                dps = int(df_f['DPS'].iloc[-1])  # 배당금을 dps 변수에 저장
                dps_li.append([y - 1, dps])  # 년도와 배당금을 리스트로 저장(년도는 전년도로 저장)
 
                i += 1
        except:
            pass
        print(dps_li)
 
        for data in dps_li:
            exist = self.textEdit.toPlainText()
            self.textEdit.setText(exist + '연도 : ' + str(data[0]) + ' / 배당금 : ' + str(format(data[1], ",")) + '\n')
 
        # 주가, 배당수익률 비교 그래프
        df = pd.read_sql("SELECT code, 일자, 종가, DIV FROM fundamental WHERE code = '" + code + "' AND 일자 >= " + start,
                         con)
        df['일자'= pd.to_datetime(df['일자'])
        df = df.set_index('일자')
        df = df[['종가''DIV']]
        df.columns = ['price''DIV']
 
        today_s = datetime.today()
        today_s = datetime.strftime(today_s, '%Y%m%d')  # 오늘일자를 str으로
        start_s = str(int(today_s[:4]) - 3+ today_s[-4:]  # 3년전 날짜(파는 것은 좀 더 보수적으로 하기 위해 짧게 잡기)
        df_s = pd.read_sql("SELECT 일자, code, 종목명, DIV FROM fundamental WHERE code = '" + code + "'" +
                           " AND 일자 >= " + start_s, con)  # 3년을 기준으로 한 Dataframe
 
        p_max = str(format(df['price'].max(), ","))
        p_min = str(format(df['price'].min(), ","))
        d_max = str(round(df['DIV'].max(), 2))
        d_min = str(round(df['DIV'].min(), 2))
        price = str(format(df['price'].iloc[-1], ","))
        div = str(round(df['DIV'].iloc[-1], 2))
        div_min = str(round(df_s['DIV'].min(), 2))  # 3년내 최소값
        div_base = str(round((float(d_max) - float(div_min)) * 0.85 + float(div_min), 2))  # 매수를 할 기준값
        p_base = int(dps_li[-1][1/ float(div_base) * 100#매수 기준가격 계산
        sell_base = int(dps_li[-1][1/ ((float(d_max)-float(div_min)) * 0.4 + float(div_min)) * 100#매도시작 기준가격 계산
        profit = round(((sell_base / p_base) - 1* 1002#수익률 계산
        print(profit)
 
        self.lbl_pmax.setText(p_max) #기간내 최고주가
        self.lbl_pmin.setText(p_min) #기간내 최저주가
        self.lbl_dmax.setText(d_max) #기간내 최고 DIV
        self.lbl_dmin.setText(d_min) #기간내 최저 DIV
        self.lbl_price.setText(price) #최근주가
        self.lbl_div.setText(div) #최근 배당수익률
        self.le_start.setText(start) #데이터 시작일
        self.lbl_buy.setText(div_base + ' / ' + format(p_base, ","+ '원 이하'#매수기준 배당률 및 매수가격
        self.lbl_3ymin.setText(div_min + ' / ' + format(sell_base, ","+ '원 이상 (' +
                               str(profit) + '%) 예상'#3년기준 최저 배당률 및 매도가격
 
        plt.rcParams['figure.figsize'= (169)
 
        fig, ax1 = plt.subplots()
        ax1.set_xlabel('Date')
        ax1.set_ylabel('PRICE')
        ax1.plot(df.index, df['price'], color='red', label='PRICE')
        ax1.legend(loc='upper left')
 
        ax2 = ax1.twinx()
        ax2.set_ylabel('DIV')
        ax2.plot(df.index, df['DIV'], color='blue', label='DIV')
        ax2.legend(loc='upper right')
        plt.title(name + 'DIV 비교')
        plt.grid(True)
        plt.show()
        con.close()
 
        self.per_pbr() #PER, PBR 분석
        # self.company_ex() #개별종목 주가와 환율 상관관계
 
    #종목별 PER, PBR 분석
    def per_pbr(self):
        con = sqlite3.connect('krx_data.db')
        code = self.lbl_code.text()
        name = self.le_name.text()
        start = self.le_start.text()
 
        today = datetime.today()
        today = datetime.strftime(today, '%Y%m%d')
 
        df_f = pd.read_sql("SELECT code, 일자, 종가, PER, PBR FROM fundamental WHERE code = '" + code
                           + "' AND 일자 >= " + start + " AND 일자 <=" + today, con)
        df = pd.DataFrame({'PRICE': df_f['종가'], 'PER': df_f['PER'], 'PBR': df_f['PBR']})
        df.index = df_f['일자']
        df.index = pd.to_datetime(df.index)
        # df = df.replace(0, np.NaN)
        df.dropna(inplace=True)
 
        print(df)
 
        plt.rcParams['figure.figsize'= (169)
 
        fig, ax1 = plt.subplots()
        ax1.set_xlabel('DATE')
        ax1.set_ylabel('PIRCE')
        ax1.plot(df.index, df['PRICE'], color='red', label='PRICE')
        ax1.legend(loc='upper right')
 
        ax2 = ax1.twinx()
        ax2.set_ylabel('PER')
        ax2.plot(df.index, df['PER'], color='blue', label='PER')
        ax2.legend(loc='lower right')
 
        plt.title(name + ' PER')
        plt.grid(True)
 
        fig, ax3 = plt.subplots()
        ax3.set_xlabel('DATE')
        ax3.set_ylabel('PIRCE')
        ax3.plot(df.index, df['PRICE'], color='red', label='PRICE')
        ax3.legend(loc='upper right')
 
        ax4 = ax3.twinx()
        ax4.set_ylabel('PBR')
        ax4.plot(df.index, df['PBR'], color='blue', label='PBR')
        ax4.legend(loc='lower right')
 
        plt.title(name + ' PBR')
        plt.grid(True)
 
        per = round(df['PER'][-1], 2)
        min_per = df['PER'].min()
        max_per = df['PER'].max()
        med_per = df['PER'].median()
 
        print(per)
        print(min_per)
        print(max_per)
        print(med_per)
 
        pbr = round(df['PBR'][-1], 2)
        min_pbr = df['PBR'].min()
        max_pbr = df['PBR'].max()
        med_pbr = df['PBR'].median()
 
        print(pbr)
        print(min_pbr)
        print(max_pbr)
        print(med_pbr)
 
        self.lbl_per_max.setText(str('{:0,.2f}'.format(max_per)))  #PER최대값
        self.lbl_per_min.setText(str('{:0,.2f}'.format(min_per)))  # PER최소값
        self.lbl_per_now.setText(str('{:0,.2f}'.format(per)))  # 현재PER
        self.lbl_pbr_max.setText(str('{:0,.2f}'.format(max_pbr)))  # PBR최대값
        self.lbl_pbr_min.setText(str('{:0,.2f}'.format(min_pbr)))  # PBR최소값
        self.lbl_pbr_now.setText(str('{:0,.2f}'.format(pbr)))  # 현재PBR
 
        plt.show()
 
        con.close()
 
    # 개별종목 주가와 환율을 상관관계
    def company_ex(self):
 
        start = self.le_start.text()
 
        code = self.lbl_code.text()
        name = self.le_name.text()
 
        us_kw = fdr.DataReader('USD/KRW', start)  # 원달러 환율
        PRICE = fdr.DataReader(code, start)
 
        df = pd.DataFrame({'USD-KW': us_kw['Close'], 'PRICE': PRICE['Close']})
 
        df['X'= df['USD-KW'].pct_change(periods=300)
        df['Y'= df['PRICE'].pct_change(periods=300)
 
        df.dropna(inplace=True)
 
        print(df)
        regr = stats.linregress(df.X, df.Y)
        regr_line = f'Y = {regr.slope:.2f} * X + {regr.intercept:.2f}'
 
        plt.figure(figsize=(169))
        plt.plot(df.X, df.Y, '.')
        plt.plot(df.X, regr.slope * df.X + regr.intercept, 'r')
        plt.legend(['PRICE x USD/KRW', regr_line])
        plt.title(name + f' 주가와 환율 상관관계(300일 기준) (R={regr.rvalue:.2f})')
        plt.xlabel('USD/KRW 증감률')
        plt.ylabel(name + 'PRICE 증감률')
        plt.show()
 
    #코스피지수와 원달러환율 비교
    def kospi_ex(self):
        ex = fdr.DataReader('USD/KRW''2003-12-01')   # 환율데이터 가져오기
        kospi = fdr.DataReader('KS11''2003-12-01')  # KOSPI 데이터 가져오기
 
        df = pd.DataFrame({'KOSPI': kospi['Adj Close'], 'Exchange': ex['Adj Close']})
        df.dropna(inplace=True)
        print(df)
 
        plt.rcParams['figure.figsize'= (169)
 
        fig, ax1 = plt.subplots()
        ax1.set_xlabel('DATE')
        ax1.set_ylabel('KOSPI')
        ax1.plot(df.index, df['KOSPI'], color='red', label='KOSPI INDEX')
        ax1.legend(loc='upper right')
 
        ax2 = ax1.twinx()
        ax2.set_ylabel('Exchange Rate')
        ax2.plot(df.index, df['Exchange'], color='blue', label='Exchange Rate')
        ax2.legend(loc='lower right')
 
        plt.title('Exchange Rate VS KOSPI Index')
        plt.grid(True)
 
        exchange = round(df['Exchange'][-1], 2)
        kospi_index = round(df['KOSPI'][-1], 2)
        date = df.index[-1]
 
        self.lbl_date.setText(str(date))
        self.lbl_kospi.setText(str(kospi_index))
        self.lbl_ex.setText(str(exchange))
 
        plt.show()
 
    # 코스피증감률과 원달러환률 증감률
    def kospi_ex_changerate(self):
        us_kw = fdr.DataReader('USD/KRW''2003-12-01')  # 원달러 환율
        kospi = fdr.DataReader('KS11''2003-12-01')
        us_kw['uskw_change_rate'= us_kw['Close'].pct_change(periods=300)
        kospi['kospi_change_rate'= kospi['Close'].pct_change(periods=300)
 
        df = pd.DataFrame({'KOSPI CH RATE': kospi['kospi_change_rate'], 'US-KW CH RATE': us_kw['uskw_change_rate']})
        df.dropna(inplace=True)
 
        plt.rcParams['figure.figsize'= (169)
 
        fig, ax1 = plt.subplots()
        ax1.set_xlabel('DATE')
        ax1.set_ylabel('KOSPI CH RATE')
        ax1.plot(df.index, df['KOSPI CH RATE'], color='red', label='KOSPI CH RATE')
        ax1.legend(loc='upper left')
 
        ax2 = ax1.twinx()
        ax2.set_ylabel('US-KW CH RATE')
        ax2.plot(df.index, df['US-KW CH RATE'], color='blue', label='US-KW CH RATE')
        ax2.legend(loc='upper right')
 
        plt.title('KOSPI CHANGE RATE VS US-KW CHANGE RATE')
        plt.grid(True)
 
        plt.show()
 
    # 배당수익률을 기준으로 종목 선정하기
    def filtered_by_div(self):
        con = sqlite3.connect('krx_data.db')
 
        div = self.le_div.text()
 
        # 과거 10년간의 Dataframe 구하기
        def filter_by_period(today, ticker):
            start = str(int(today[:4]) - 10+ today[-4:]
            end = str(today)
            df = pd.read_sql("SELECT 일자, code, 종목명, DIV, DPS FROM fundamental WHERE code = '" + ticker + "'" +
                             " AND 일자 >= " + start + " AND 일자 < " + end, con)
            return df
 
        div = self.le_div.text()
 
        today_df = pd.read_sql("SELECT 일자 FROM fundamental ORDER BY ROWID DESC LIMIT 1", con)
        # DB에서 마지막 행 구하기
        today = today_df['일자'].iloc[0]  # 마지막 행에서 날짜 구하기
        print(today)
        today_df = pd.read_sql("SELECT 일자, code, 종목명, DIV, DPS, PER, EPS FROM fundamental WHERE 일자 = "
                               + today + " AND DPS > 0 AND DIV > " + str(div) + " AND 0 < PER AND PER < 10", con)
 
        # 오늘 날짜 기준으로 Data를 분석하기
        to_see_codes = []
        count = 0
        for code in today_df['code']:
            try:
                print(len(today_df['code']) - count)
                t_df = today_df[today_df['code'== code]
                name = t_df['종목명'].iloc[0]
                t_div = t_df['DIV'].iloc[0]  # 기준일자의 DIV
 
                df = filter_by_period(today, code)
                m = int(len(df['DPS']) / 2)
                if df['DPS'].iloc[0<= df['DPS'].iloc[-1and df['DPS'].iloc[0!= 0 and \
                        df['DPS'].iloc[m] <= df['DPS'].iloc[-1]:
                    if ((df['DIV'].max() - df['DIV'].min()) * 0.85 + df['DIV'].min()) < t_div:
                        to_see_codes.append([today, code, name, t_div])
            except:
                pass
            count += 1
            self.prb.setValue(int(count/len(today_df)*100))
 
        total_df = pd.DataFrame(data=to_see_codes, columns=['기준일''Code''종목명''배당률'])
        print(total_df)
        for i in range(len(total_df)):
            print(i)
            exist = self.te_div.toPlainText()
            self.te_div.setText(exist + '기준일 : ' + str(total_df['기준일'].iloc[i]) +
                                ' / CODE : ' + str(total_df['Code'].iloc[i]) +
                                ' / 종목명 : ' + str(total_df['종목명'].iloc[i]) +
                                ' / 배당률 : ' + str(round(total_df['배당률'].iloc[i], 2)) + '\n')
 
        total_df.to_excel('배당률로 선별한 종목 DIV ' + str(div) + '이상' + today + '.xlsx')
 
        con.close()
 
    # 장단기 미국채권 금리차와 코스피지수 비교
    def diff_tr_kospi(self):
        kospi = fdr.DataReader('KS11''2000')
        print(kospi)
        T10Y2Y = fdr.DataReader('FRED:T10Y2Y''2000-01-04')  # 미국 장단기 금리차
        print(T10Y2Y)
 
        df = pd.DataFrame({'KOSPI': kospi['Adj Close'], 'T10Y2Y': T10Y2Y['T10Y2Y']})
        df.dropna(inplace=True)
 
        self.lbl_kospi_index.setText(str('{:0,.2f}'.format(int(df['KOSPI'].iloc[-1]))))  # 최근 코스피지수
        self.lbl_diff_tr.setText(str(round(df['T10Y2Y'].iloc[-1], 2)))  # 최근 미국채권 장단기금리 차
        minus_df = df[df['T10Y2Y'< 0]  # 금리가 역전된 최근 일자의 데이터 프레임
        self.lbl_diff_rate.setText(str('{0:,.2f}'.format(minus_df['T10Y2Y'].iloc[-1]))) # 최근 마이너스 금리차
        self.lbl_diff_date.setText(datetime.strftime(minus_df.index[-1], '%Y%m%d'))  # 최근 금리차 역전된 날짜
 
        plt.rcParams['figure.figsize'= (169)
 
        fig, ax1 = plt.subplots()
        ax1.set_xlabel('DATE')
        ax1.set_ylabel('KOSPI')
        ax1.plot(df.index, df['KOSPI'], color='red', label='KOSPI INDEX')
        ax1.legend(loc='upper right')
 
        ax2 = ax1.twinx()
        ax2.set_ylabel('T10Y2Y')
        ax2.plot(df.index, df['T10Y2Y'], color='blue', label='10Y - 2Y Treasury')
        ax2.legend(loc='upper left')
 
        plt.title('USA 10Year-2Year Treasury VS KOSPI')
        plt.grid(True)
 
        plt.show()
 
    # KOSPI INDEX vs PBR
    def kospi_pbr(self):
        today = datetime.today()
        today = datetime.strftime(today, '%Y%m%d')
        print(today)
 
        p = 1
        # 1년 단위로 끊어서 데이터 가져오기
        for y in range(2004int(today[:4])):
            start = str(y) + today[-4:]
            end = str(y + 1+ today[-4:]
            df_pbr = stock.get_index_fundamental(start, end, '1001')
            if p == 1:
                total_df = df_pbr
            else:
                total_df = pd.concat([total_df, df_pbr])
            p += 1
 
        df = pd.DataFrame({'KOSPI': total_df['종가'], 'PBR': total_df['PBR']})
        df = df.replace(0, np.NaN)
        df.dropna(inplace=True)
        print(df)
 
        plt.rcParams['figure.figsize'= (169)
 
        fig, ax1 = plt.subplots()
        ax1.set_xlabel('DATE')
        ax1.set_ylabel('KOSPI')
        ax1.plot(df.index, df['KOSPI'], color='red', label='KOSPI INDEX')
        ax1.legend(loc='upper right')
 
        ax2 = ax1.twinx()
        ax2.set_ylabel('PBR')
        ax2.plot(df.index, df['PBR'], color='blue', label='PBR')
        ax2.legend(loc='lower right')
 
        plt.title('PBR VS KOSPI Index')
        plt.grid(True)
 
        pbr = round(df['PBR'][-1], 2)
        kospi_index = round(df['KOSPI'][-1], 2)
        date = df.index[-1]
        min_pbr = df['PBR'].min()
        max_pbr = df['PBR'].max()
        med_pbr = df['PBR'].median()
 
        self.lbl_kospi_pbr.setText(str('{:0,.2f}'.format(kospi_index)))  # 최근 코스피지수
        self.lbl_pbr.setText(str('{:0,.2f}'.format(pbr)))  # 최근 코스피 PBR
        self.lbl_kospi_date2.setText(datetime.strftime(date, '%Y%m%d'))  # 날짜
        self.lbl_min_pbr.setText(str('{:0,.2f}'.format(min_pbr)))  # PBR최소값
        self.lbl_max_pbr.setText(str('{:0,.2f}'.format(max_pbr)))  # PBR최대값
        self.lbl_med_pbr.setText(str('{:0,.2f}'.format(med_pbr)))  # PBR중앙값
 
        plt.show()
 
    # KOSPI INDEX vs PER
    def kospi_per(self):
        today = datetime.today()
        today = datetime.strftime(today, '%Y%m%d')
        print(today)
 
        p = 1
        # 1년 단위로 끊어서 데이터 가져오기
        for y in range(2004int(today[:4])):
            start = str(y) + today[-4:]
            end = str(y + 1+ today[-4:]
            df_per = stock.get_index_fundamental(start, end, '1001')
            if p == 1:
                total_df = df_per
            else:
                total_df = pd.concat([total_df, df_per])
            p += 1
 
        df = pd.DataFrame({'KOSPI': total_df['종가'], 'PER': total_df['PER']})
        df = df.replace(0, np.NaN)
        df.dropna(inplace=True)
        print(df)
 
        plt.rcParams['figure.figsize'= (169)
 
        fig, ax1 = plt.subplots()
        ax1.set_xlabel('DATE')
        ax1.set_ylabel('KOSPI')
        ax1.plot(df.index, df['KOSPI'], color='red', label='KOSPI INDEX')
        ax1.legend(loc='upper right')
 
        ax2 = ax1.twinx()
        ax2.set_ylabel('PER')
        ax2.plot(df.index, df['PER'], color='blue', label='PER')
        ax2.legend(loc='lower right')
 
        plt.title('PER VS KOSPI Index')
        plt.grid(True)
 
        per = round(df['PER'][-1], 2)
        kospi_index = round(df['KOSPI'][-1], 2)
        date = df.index[-1]
        min_per = df['PER'].min()
        max_per = df['PER'].max()
        med_per = df['PER'].median()
 
        self.lbl_kospi_per.setText(str('{:0,.2f}'.format(kospi_index)))  # 최근 코스피지수
        self.lbl_per.setText(str('{:0,.2f}'.format(per)))  # 최근 코스피 PER
        self.lbl_kospi_date.setText(datetime.strftime(date, '%Y%m%d'))  # 날짜
        self.lbl_min_per.setText(str('{:0,.2f}'.format(min_per)))  # PER최소값
        self.lbl_max_per.setText(str('{:0,.2f}'.format(max_per)))  # PER최대값
        self.lbl_med_per.setText(str('{:0,.2f}'.format(med_per)))  # PER중앙값
 
        plt.show()
 
    # DB 업데이트
    def db_update(self):
        try:
            con = sqlite3.connect('krx_data.db')
 
            # 오늘날짜 기준으로 아직 받지않은 Data를 DB에 다운로드 받기
            # 영업일을 List로 가져오기
            def make_date_list(start, end):
                start = datetime.strptime(start, '%Y%m%d')
                end = datetime.strptime(end, '%Y%m%d')
                dates = [(start + timedelta(days=i)).strftime('%Y%m%d'for i in range((end - start).days + 1)]
                b_dates = []
                for d in dates:
                    b_day = stock.get_nearest_business_day_in_a_week(d)
                    if not b_day in b_dates:
                        b_dates.append(b_day)
                        s = random.randint(13)
                        time.sleep(s)
 
                return b_dates
 
            # Data를 다운로드 받기
            def data_download(date):
                codes = stock.get_market_ticker_list(date, market='ALL')  # code list 만들기
                corp = []  # Code와 Name을 저장할 List
                for code in codes:
                    name = stock.get_market_ticker_name(code)  # 종목 이름 가져오기
                    corp.append([code, name])  # Code와 이름으로 리스트를 만들기
                df1 = pd.DataFrame(data=corp, columns=['code''종목명'])  # code와 종목명을 데이터프레임으로 만들기
                df1.index = df1['code']  # index를 코드로 만들기
 
                df_f = stock.get_market_fundamental_by_ticker(date=date,
                                                              market='ALL')  # BPS, PER, PBR, EPS, DIV, DPS 가져와서 데이터 프레임 만들기
                df_c = stock.get_market_cap_by_ticker(date=date, market='ALL')  # 종가, 시가총액, 거래량, 거래대금, 상장주식수 가져오기
 
                time.sleep(1)
 
                df = pd.merge(df1, df_c, left_index=True, right_index=True)  # 종목명, 종가, 시가총액, 거래량, 거래대금, 상장주식수
                df = pd.merge(df, df_f, left_index=True, right_index=True)  # 위에 df + PER, PBR...
                # column은 '종목명', '종가', '시가총액', '거래량', '거래대금', '상장주식수', 'BPS', 'PER', 'PBR', 'EPS', 'DIV', 'DPS'
 
                df['일자'= date
                df = df.set_index('일자')
                df = df[['code''종목명''종가''시가총액''거래량''거래대금''상장주식수''BPS''PER''PBR',
                         'EPS''DIV''DPS']]
 
                return df
 
            # DB에서 마지막 행 구하기
            db_last_df = pd.read_sql("SELECT 일자, code, 종목명, DIV, DPS FROM fundamental ORDER BY ROWID DESC LIMIT 1", con)
            db_last_date = db_last_df['일자'].iloc[0]  # 마지막 행에서 날짜 구하기
            db_last_date = datetime.strptime(db_last_date, '%Y%m%d')
            start_date = (db_last_date + timedelta(days=1)).strftime('%Y%m%d')
 
            # 오늘날짜 구하기
            today = datetime.today().strftime('%Y%m%d')
            end_date = stock.get_nearest_business_day_in_a_week(today, prev=True)
            print(end_date)
 
            # 데이터 받아서 데이터프레임으로 합치고, DB에 저장
            if start_date <= end_date:
                try:
                    dates = make_date_list(start_date, end_date)
                    print(dates)
                    for n, date in enumerate(dates):
                        print(date)
                        if n == 0:
                            t_df = data_download(date)
                        else:
                            t_df = pd.concat([t_df, data_download(date)])
                        self.prb.setValue(int((n + 1/ len(dates) * 100))  # 진행 상태바 표시
                        time.sleep(0.1)  # 혹시나 차단될 수 있으니깐
                    print(t_df)
                    t_df.to_sql('fundamental', con, if_exists='append')
                except:
                    pass
            con.close()
        except:
            pass
 
    # Quant(PBR x DPS) 종목고르기
    def quant(self):
 
        con = sqlite3.connect('krx_data.db')
        theday_df = pd.read_sql("SELECT 일자 FROM fundamental", con)  # DB에서 마지막 행 구하기
        theday = theday_df['일자'].iloc[-1]  # 마지막 행에서 날짜 구하기
        print(theday)
 
        df_q = pd.read_sql("SELECT 일자, code, 종목명, 종가, 거래량, 상장주식수, PBR, DPS FROM fundamental WHERE 일자="
                           + theday, con)
        df_q = df_q[(df_q['거래량'> 0& (df_q['PBR'> 0& (df_q['DPS'> 0)] #거래량, PBR, DPS가 모두 0 이상인 종목만 가져오기
 
        df_q['PBR_RANK'= df_q['PBR'].rank()  # 낮은 순서대로 순위매기기
        df_q['DPS_RANK'= df_q['DPS'].rank()  # 낮은 순서대로 순위매기기
        df_q['PBR_DPS'= df_q['PBR_RANK'+ df_q['DPS_RANK']  # 순위매긴걸 더하기
        df_q['PBR_DPS_RANK'= df_q['PBR_DPS'].rank()  # 최종순위 구하기
        df_q.sort_values(by='PBR_DPS_RANK', inplace=True)  # 낮은 순서대로 정렬하기
        print(df_q)
 
        df_q = df_q.iloc[:20]  # 20개만 고르기
 
        for i in range(len(df_q)):
            print(i)
            no = str(i+1).zfill(2)
            exist = self.te_quant.toPlainText()
 
            self.te_quant.setText(exist + no + '  ' + str(df_q['일자'].iloc[i]) + '  ' + str(df_q['code'].iloc[i]) + '  '
                                  + str(df_q['종목명'].iloc[i]) + '  ' + str(format(df_q['종가'].iloc[i], ',')) + '\n')
 
        con.close()
        df_q.to_excel("종목고르기(PBRxDPS)"+str(theday)+'.xlsx')
 
        os.startfile("종목고르기(PBRxDPS)"+str(theday)+'.xlsx'#파일열기
 
 
 
if __name__ == '__main__':
    app = QApplication(sys.argv)
    Window = MainWindow()
    Window.show()
    app.exec_()
cs
728x90
반응형

댓글